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Repeated exposure to pain can result in sensitization of the central nervous system, enhancing
subsequent pain and potentially leading to chronicity. The ability to reverse this sensitization in a
top-down manner would be of tremendous clinical benefit, but the degree that this can be accomplished
volitionally remains unknown. Here we investigated whether a brief (�5 min) cognitive-behavioural
intervention could modify pain perception and reduce central sensitization (as reflected by secondary
hyperalgesia). In each of 8 sessions, 2 groups of healthy human subjects received a series of painful
thermal stimuli that resulted in secondary hyperalgesia. One group (regulate) was given brief pain-
focused cognitive training at each session, while the other group (control) received a non-pain-focused
intervention. The intervention selectively reduced pain unpleasantness but not pain intensity in the
regulate group. Furthermore, secondary hyperalgesia was significantly reduced in the regulate group
compared with the control group. Reduction in secondary hyperalgesia was associated with reduced pain
catastrophizing, suggesting that changes in central sensitization are related to changes in pain-related
cognitions. Thus, we demonstrate that central sensitization can be modified volitionally by altering
pain-related thoughts.

� 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
1. Introduction

The famed case reports of Beecher [4] describe soldiers who are
badly wounded but report no pain until safely out of harm’s way.
Under other conditions, seemingly modest stimuli can evoke in-
tense pain. These observations exemplify the intriguing disconnect
that can exist between nociception and pain. One mechanism
thought to contribute to this discrepancy is central sensitization in
which the gain of the central nervous system is increased, resulting
in increased pain [46] and likely contributing to many chronic pain
conditions [1,10,46].

Central sensitization is commonly experience-dependent [22],
occurring as a result of plasticity after injury. Although individuals
may have limited volitional control over the nociceptive input con-
tributing to this sensitization, they may exert top-down control
over cognitive and affective responses, which might in turn exert
descending control on incoming signals. Thus, an intriguing and
clinically relevant question is whether training individuals to alter
their cognitive and affective response to nociceptive input might
mitigate or reverse central sensitization. Central sensitization can
be modified by the cognitive and affective context in which pain
occurs, as demonstrated by the association between sensitization
and catastrophizing [11,16,19,29], expectation of analgesia [17],
and emotional state [29,30,32]. The degree to which training can
enhance this cognitive modulation and bring central sensitization
under volitional control remains unknown, however. These
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previous studies consistently demonstrate that negative emotions
and pain-related cognitions are associated with increased central
sensitization. Therefore, we hypothesized that cognitive training
that reduced negative cognitions and emotions associated with
pain would be associated with reduced sensitization. Towards this
end, we developed a brief intervention based on cognitive
behavioural therapy (CBT) [2], a psychotherapeutic intervention
that targets maladaptive cognitions towards the goal of reducing
negative affect. CBT has been successfully adapted to treat pain
[38,39,45].

Secondary hyperalgesia is a form of central sensitization in
which pain sensitivity is enhanced beyond the site of injury.
Originally attributed to sensitization of spinal cord dorsal horn
neurons, regions higher in the neuraxis, including the periaqueduc-
tal gray (PAG) and rostral ventromedial medulla (RVM) have also
been shown to contribute to the inception and maintenance of
secondary hyperalgesia [40]. Cortical areas involved in top-down
regulatory processes can modulate these brain stem regions both
directly and through connections with limbic regions, such as the
nucleus accumbens, hypothalamus, or amygdala [15]. Neuroimag-
ing studies have demonstrated cortical involvement in pharmaco-
logical and placebo modulation of secondary hyperalgesia [34],
providing a plausible mechanism through which secondary hyper-
algesia can be modulated by altering pain-related cognitions. It is
challenging, however, to acquire behavioural evidence to demon-
strate how cognitive training might alter secondary hyperalgesia,
because of the difficulty in quantifying injury-related nociceptive
input in clinical settings where such interventions commonly
occur.

To address this issue, we designed a novel experimental
paradigm to determine whether a brief course of CBT could reduce
secondary hyperalgesia and affective responses to prolonged
experimental heat pain. Given CBT’s emphasis on pain-related cog-
nitions and emotions, we hypothesized that the effects of this
intervention would be specific to the unpleasantness of pain.

2. Methods

2.1. Subjects

Forty-one healthy subjects provided informed consent to proce-
dures approved by the University Health Network research ethics
board. Subjects were prescreened for chronic pain, psychiatric
disorders, use of medications, and medical conditions that would
affect pain response. Two subjects withdrew and 5 were excluded
for technical reasons, leaving 34 subjects (age range 21–38 years)
who were randomized into either an active (ie, pain-focused) treat-
ment (regulate group, n = 17, 8 women) or nonactive (ie, non-pain-
focused) treatment (control, n = 17, 8 women) group. Each subject
underwent 10 experimental sessions over 21 days including initial
and final sessions (for thermal thresholds and questionnaires) and
8 test sessions (Fig. 1). The 8 sessions occurred over a total of 10 to
19 days (mean 13.2 days, standard error 1.9)

2.2. Thermal detection and pain thresholds

Thermal stimuli were delivered to the left volar forearm with a
30 � 30 mm Peltier thermode (TSA-II, Medoc Ltd, Israel). To deter-
mine warmth detection thresholds, we used a standard ramp pro-
tocol provided with Medoc software. Subjects were instructed to
press a button when they felt a warm sensation (baseline temper-
ature 32�C, ramp rate 1�C/s, negligible interstimulus interval [ISI],
average of 4 trials). To determine heat pain thresholds, subjects
were instructed to press the button when the temperature became
painful (baseline temperature 32�C, ramp rate 1�C/s, 30 s ISI, final 3
of 4 trials used).
2.3. Determination of intensity of experimental stimuli

We used an iterative procedure to determine individualized lev-
els of pain. We gave a series of 8 s stimuli, beginning at heat pain
threshold +1�C. Subjects rated pain intensity and unpleasantness
on a 0 to 10 numeric rating scale (NRS; for intensity: 0 = no pain,
10 = most intense pain imaginable; for unpleasantness: 0 = not
unpleasant, 10 = extremely unpleasant). The distinction between
unpleasantness and intensity was explained using instructions
adapted from Price et al. [28]. Stimuli were reduced 0.5�C if it
was intolerable and increased by 0.5�C if intensity or unpleasant-
ness were <6, until a tolerable temperature <50�C and rated P6/
10 on 6 consecutive trials was found. The temperature determined
in this session was used in all subsequent sessions.

2.4. Experimental protocol and cognitive training

Subjects received forty-five 8-s noxious heat stimuli (30 s ISI)
during each of eight 1 h test sessions (Fig. 1). Every 15 trials, sub-
jects rated stimulus intensity and unpleasantness (0–10 NRS).
Within-session ratings were averaged and used to analyze be-
tween-session changes. To check whether there was a significant
within session variance in these measurements, we conducted an
analysis in which we included Measurement as a variable with 3
levels (first, second, and third pain ratings within session).

Before administration of the thermal stimuli, subjects in the
regulate group received a brief (�5 min) session of pain-focused
cognitive behavioural training based on an existing treatment
manual [38]. They were taught about the relationship between
sensory, cognitive, and emotional responses to pain and were
trained to reduce their stress response to the painful stimuli by
identifying negative cognitions that arose and reappraising their
situation to focus on potential benefits of the training (eg, ability
to cope with future pain stimuli, financial compensation). They
were encouraged to use their training to cope with the painful
experimental stimuli. Subjects in the control group were trained
in interpersonal effectiveness [23] after the pain stimuli. This train-
ing focused on managing the demands of others by effectively bal-
ancing goals and expectations and communicating assertively but
respectfully with others. Given that investigation of the effects of
cognitive training on central sensitization is relatively novel, we
sought to determine whether such training had any effect on sec-
ondary hyperalgesia rather than to compare it directly to another
active psychotherapeutic treatment. Thus, the therapeutic inter-
vention given to the control group was designed to control for gen-
eral and non-pain-specific effects of a psychotherapeutic
intervention (eg, global changes in mood) and not to encourage at-
tempts to cognitively regulate the pain stimuli. Therefore, no link
between the training and the painful stimuli was explicitly made
and the training was administered after the pain stimuli. Both
treatments were administered by an individual (TVS) with gradu-
ate training in clinical psychology and equivalent experience
administering each treatment. The full text of both interventions
administered is available online as Supplemental material.

2.5. Self-report measures

Subjects completed the Dysfunctional Attitude Scale (DAS) [44],
NEO Five-Factor Inventory (NEO-FFI) [8], and Coping Strategies
Questionnaire [31] at the initial visit. Subjects completed the trait
version of the Pain Catastrophizing Scale (PCS) [37], Beck depres-
sion inventory (BDI) [3], and Spielberger State/Trait Anxiety Inven-
tory (STAI) [36] at the initial and final sessions. Participants rated
the degree to which they found the training material novel (‘‘The
material was new to me’’) and useful (‘‘I learned skills which will
be useful to me in other contexts’’) and the degree to which they
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Fig. 1. Experimental design. Subjects participated in 10 sessions over 21 days. Hyperalgesia and allodynia were measured immediately after pain stimuli at sessions 1 and 8.
Warmth detection thresholds; heat pain thresholds; and questionnaires were measured at initial and final sessions.
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used them outside the training sessions (‘‘I practiced the skills
outside the lab’’) on a 5-point Likert scale.

2.6. Secondary hyperalgesia and allodynia measurement

The areas of secondary hyperalgesia and allodynia (pain evoked
by a nonnociceptive stimulus) were measured immediately after
the last pain stimulus at sessions 1 and 8 by an individual (NE)
blinded to group assignment. Measurement was conducted on
the basis of previously published work [25]. The borders of second-
ary hyperalgesia were delineated using punctate mechanical stim-
uli (256 mN von Frey filament) delivered to the volar forearm
distal to the stimulus site (wrist, elbow, side of arm) and moved
in 0.5 cm increments along 8 orthogonal trajectories from well out-
side the hyperalgesic region towards the stimulation site until the
subject reported an increase in pain intensity. Subjects were in-
structed to indicate the moment they felt an increased pinprick
sensation (relative to the pinprick sensation they experienced at
the more distal region). As soon as they felt a change in sensation,
the stimulation was stopped and the exact location was marked.
Allodynia was assessed using a brush stimulus along the same tra-
jectories. The areas of hyperalgesia and allodynia were calculated
by transcribing the data points from each trajectory to measured
graph paper (with 1 mm2 resolution) to obtain surface area. These
calculations were conducted without knowledge of group
assignment.

2.7. Statistical analyses

Our first hypothesis was that the CBT intervention would re-
duce secondary hyperalgesia. To test this hypothesis, we used a
mixed model analysis of variance (ANOVA), with Group (control
vs regulate) as a between-subject variable and Session (1 vs 8) as
a within-subject variable. To test our second hypothesis—that the
CBT intervention would specifically reduce pain unpleasantness—
we again entered Group as a between-subject variable and Session
as a within-subject variable into a mixed model ANOVA along with
another within-subject variable, Rating Type (Pain Intensity vs Pain
Unpleasantness). To ensure that measurement of pain perception
did not significantly vary within sessions, we also entered Mea-
surement (within-session measurements 1–3) as a within-subject
variable for each Rating type. To understand the effects that drove
the significant interactions, we then followed these analyses up by
examining simple main effects. For simple main effects, between-
subjects analysis (of Group) were conducted using a 1-way ANOVA
and within-subjects effects (of Session and Rating Type) were con-
ducted by paired t tests (IBM, Armonk, NY). Correlations were com-
pared by a Fisher r-to-z transformation (Vassar stats tool http://
vassarstats.net/rdiff.html). Analyses were thresholded at P < .05.

3. Results

3.1. Pain-specific intervention selectively reduced pain unpleasantness

In line with our prediction, the CBT intervention differentially
affected pain intensity and unpleasantness, as evidenced by a sig-
nificant Session � Group � Rating interaction (F1,32 = 4.32, P < .05)
(Fig. 2). To determine whether this was driven by selective reduc-
tion in unpleasantness in the CBT group, we examined
Group � Session interactions for each Rating Type separately.
There was a significant Group � Session interaction for unpleas-
antness ratings (F1,32 = 4.93, P < .05) but not intensity ratings
(F1,32 = 1.8, P = .2). The pain-focused cognitive training reduced
pain unpleasantness ratings by 58% (mean ± standard error [SE]
6.5 ± 0.5 to 3.1 ± 0.5), whereas the nonpain training induced a
31% reduction in pain unpleasantness in the control group
(mean ± SE 6.5 ± 0.4 to 4.5 ± 0.5). The pain intensity ratings de-
creased by 38% in the regulate group (mean ± SE 7.2 ± 0.4 to
4.5 ± 0.5) and by 28% in the control group (mean ± SE 6.8 ± 0.2 to
4.9 ± 0.4). At Session 1, there was no group difference for pain
intensity (F1,32 = 0.47, P = .5) or pain unpleasantness (F1,32 = 0.01,
P = .94). At Session 8, there was no significant Group difference
for pain intensity (F1,32 = 0.46, P = .5) but a marginally significant
Group difference in pain unpleasantness (F1,32 = 4.03, P = .05). Both
groups rated the stimuli as less intense and less unpleasant after 8
training sessions (F1,32 = 72.72, P < .05), with significant pre- to
postintervention reductions in pain threshold (Table 1), indicating
a habituation effect across sessions.

There were no Group �Measurement � Session interactions for
intensity (F2,64 = 0.47, P = .63) or unpleasantness (F2,64 = 0.03,
P = .97) indicating that the intervention did not significantly alter
the pattern of pain perception reporting within session.

http://vassarstats.net/rdiff.html
http://vassarstats.net/rdiff.html
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Fig. 2. Significant Group � Session � Ratings type interaction. Pain intensity was
reduced equally in both groups (A), but regulate group had significantly greater
reduction in pain unpleasantness after intervention (U denotes significant
Group � Session � Ratings interaction, F1,32 = 4.32, P < .05) (B). Relative reduction
in unpleasantness (relative to intensity) in regulate group is evident from ratio of
unpleasantness/intensity by Session and Group (⁄P < .05) (C).

Table 1
Psychophysical and behavioural data.a

Condition and group First measure

Hyperalgesia (cm2) Regulate 48.0 (7.01)
Control 45.0 (6.29)
F (P) 0.10 (.75)

Allodynia (cm2) Regulate 5.3 (2.54)
Control 7.1 (2.29)
F (P) 0.27 (.61)

Pain threshold (�C) Regulate 46.2 (0.77)
Control 46.0 (0.68)
F (P) 0.05 (.83)

Warmth detection threshold (�C) Regulate 36.2 (0.71)
Control 35.4 (0.38)
F (P) 1.04 (.31)

PCS Regulate 14 (2.2)
Control 16 (1.9)
F (P) 0.78 (.39)

Depression (BDI total) Regulate 5 (1.1)
Control 5 (0.9)
F (P) 0.03 (.87)

Anxiety (STAI total) Regulate 33 (1.5)
Control 30 (1.8)
F (P) 0.09 (.35)

PCS, pain catastrophizing scale; BDI, Beck Depression Index; STAI, State-Trait Anxiety In
a Data are presented as mean (standard error) group data. Paired t tests were used to co

groups within sessions.
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Measurement � Group � Rating Type interactions were not signif-
icant at sessions 1 (F2,64 = 0.37, P = .7) or 8 (F2,64 = 1.37, P = .27).
Measurement � Group and Measurement � Session interactions
were also not significant for intensity or unpleasantness. Because
of the lack of interaction with group or session, Measurement ef-
fects are not discussed further.
3.2. Pain-specific intervention reduced secondary hyperalgesia

There was secondary hyperalgesia on the volar forearm in all
but one subject in both groups after the 45 painful stimuli. In line
with our hypothesis, there was a significant difference between the
effects of the CBT intervention and the control intervention on sec-
ondary hyperalgesia, as evidenced by a significant Group � Session
interaction (F1,32 = 5.9, P < .05; Fig. 3b). There was a significant and
pronounced (38%) reduction in secondary hyperalgesia between
the 2 sessions in the regulate group but not in the control group
(which had an 8% increase) (Table 1).

Allodynia on the volar forearm was observed less consis-
tently and across a smaller area than secondary hyperalgesia
(21 of 34 subjects at session 1, 18 of 34 subjects at session
8). There was no significant change between sessions in either
group (Table 1).

Session� Group interactions were not significant for allodynia
(F1,32 = 0.53, P = .47), warmth detection threshold (F1,32 = 0.59,
P = .45), heat pain threshold (F1,32 = 0.28, P = .6), PCS score
(F1,32 = 0.77, P = .39), and depression (F1,32 = 0.12, P = .73). There were
no significant reductions in either group in any of these variables
(Table 1).

Change in secondary hyperalgesia was significantly correlated
with change in PCS within the regulate group (r = 0.56, P < .05,
Fig. 3d) but not in the control group (r = 0.27, P = .31). These corre-
lations were not significantly different from each other (Fisher r-
to-Z transformation, Z = 0.92, P = .36), so no interaction effect
should be inferred. Secondary hyperalgesia change was not signif-
icantly correlated with changes in pain intensity (r = 0.11, P = .68
for regulate; r = �0.09, P = .74 for control) or pain unpleasantness
(r = 0.08, P = .77 for regulate, r = �0.03, P = .92 for control).
ment Final measurement T P

29.8 (7.31) 3.66 <.01
48.5 (8.80) �0.47 .65
2.67 (.11)
4.8 (2.24) 0.39 .7
9.6 (4.26) �0.64 .53
1.00 (.33)
48.9 (0.22) �4.03 <.01
48.0 (0.49) �3.6 <.01
2.3 (.14)
38.0 (1.05) �1.34 .2
36.1 (0.72) �1.08 .3
2.3 (.14)
11 (2.0) 1.6 .13
16 (2.1) 0.32 .75
2.01 (.17)
4 (0.9) 1.13 .28
4 (1.1) 0.61 .55
0.03 (.87)
31 (2.1) 0.87 .4
29 (1.5) 1.28 .22
0.74 (.4)

dex.
mpare sessions within groups. One-way analyses of variance were used to compare



Fig. 3. Secondary hyperalgesia is reduced by cognitive intervention. (A) Example of
zone of mechanical secondary hyperalgesia as delineated along 8 orthogonal
measurement trajectories. (B) Difference scores for secondary hyperalgesia
(⁄P < .05) for regulate and control groups. Error bars represent standard error. (C)
Individual subjects’ change in secondary hyperalgesia by group. (D) Relationship
between absolute change in secondary hyperalgesia and pain catastrophizing.
Correlation was significant in regulate group (r = 0.56, P < .05) but not in control
group (r = 0.27, P = .31).
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3.3. No group differences at baseline

There was no significant group difference in the temperature
chosen and administered throughout the trial (F1,32 = 0.44,
P = .51, 48.3 ± 0.28�C [mean ± SE] for regulate group, 47.9 ± 0.45�C
for control group). There were no baseline differences in warmth
detection threshold, heat pain threshold, allodynia, or secondary
hyperalgesia (Table 1). There was also no significant group differ-
ence in preexisting pain-related attitudes (PCS), coping strategies
(CSQ), personality factors (NEO-FFI), depression (BDI), anxiety
(STAI), and dysfunctional attitudes (DAS) (all P > .05).

3.4. Interventions matched in subject participation and non-pain-
related benefits

The 2 groups did not differ in the degree to which they viewed
the therapeutic intervention as novel (F1,32 = 3.2, P = .08) or useful
outside of the laboratory (F1,32 = 2.10, P = .16) or in the degree to
which they practiced the skills they were taught (F1,32 = 0.36,
P = .56). This demonstrates that both treatments were considered
beneficial and that effects observed were not due to non-pain-spe-
cific differences in the treatments.

There were no significant main effects of Sex or Group � Sex
interactions in any of the dependent measures examined.

4. Discussion

Central sensitization contributes to the pathophysiology of
many clinical pain conditions [1,10,46]. The mechanisms through
which ongoing nociceptive input enhances central sensitization is
well studied [22], but little is known about how individuals might
volitionally and endogenously attenuate central sensitization by
altering their cognitive and affective response to ongoing noxious
input. To elucidate these processes, we designed a novel paradigm
in which participants were exposed to repeated thermal pain in 8
sessions, with half of the participants receiving an intervention
based on CBT [38]. We report 2 important findings.

The first key finding is that the cognitive intervention specifi-
cally altered the affective, but not sensory, dimension of pain.
The groups had a similar reduction in pain intensity over the
experimental sessions, but the regulate group had a significantly
greater reduction in pain unpleasantness ratings. This selective de-
cline in pain unpleasantness is consistent with the focus of CBT on
managing pain-related thoughts and feelings.

The second important and novel finding is that cognitive inter-
vention reduced secondary hyperalgesia, a proxy for central sensi-
tization, in the regulate group. Individuals with the greatest
reduction in secondary hyperalgesia also had the largest reduc-
tions in pain catastrophizing. Thus, we have demonstrated that
training individuals to alter their cognitive response to pain can re-
duce central sensitization and that these changes are associated
with changes in pain-related beliefs.

Although CBT is directly aimed at altering pain-related thoughts
and emotions, the effects of these alterations on the central pro-
cessing of incoming sensory signals are not well understood. Mel-
zack and Wall’s [24] classic gate control theory proposed that
descending signals from the brain could modulate incoming noci-
ceptive signals at the spinal level, providing a plausible mechanism
by which thoughts and feelings might influence pain processing
directly. We now know that supraspinal regions such as PAG and
RVM can facilitate or inhibit spinal processing of nociceptive input
and that upstream, this pathway is connected to brain regions in-
volved in cognition and affect such as the amygdala, anterior cin-
gulate, and prefrontal cortices [15]. The role of RVM-mediated
descending facilitation in secondary hyperalgesia has been demon-
strated, with facilitation of pain outside of injured tissue blocked
by transection of the spinal cord and chemical block of RVM
[20,41]. Secondary hyperalgesia may be limited by tonic descend-
ing inhibition, but with prolonged nociceptive input, descending
facilitation might become more prominent [43]. Therefore, in this
study, prolonged nociceptive input may have induced facilitation
outside the stimulation area, which was subsequently reduced or
counteracted by increased inhibitory signals.

Animal and human studies indicate an interaction of brain stem
regions involved in descending control with cortical regions in-
volved in modulation of cognition and emotion. This provides a
plausible mechanism by which altering cognitive responses to pain
might alter the balance of descending inhibition and facilitation.
Neuroimaging studies of top-down modulation of pain demon-
strated coactivation of PAG with cortical regions such as ventrome-
dial prefrontal cortex when pain is altered by cognitive
manipulations [6,12,26,33,42]. Furthermore, the dorsal horn’s
involvement in placebo analgesia suggests a link between expecta-
tion and modulation of ascending nociceptive signals [13].
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Behavioural evidence also supports the possibility that central
sensitization and descending pain control can be altered on the ba-
sis of cognitive and/or affective context in which pain occurs. For
example, expectation of hyperalgesia can block analgesic effects
of counterirritation [17], and emotional manipulations can alter
self-reported pain perception and nociceptive flexion reflex in a va-
lence-specific manner [30], suggesting descending inhibition and
facilitation of spinal responses. There is also evidence that relaxa-
tion training alters nociceptive flexion reflex [14]. Consistent with
our finding that changes in secondary hyperalgesia co-occurred
with, but did not correlate with, changes in perceived pain
unpleasantness, affective modulation of pain self-report and spinal
reflexes can be dissociated under different cognitive conditions
[29] via separate neural mechanisms [32]. There are also individual
differences in the degree to which changes in sensitization and
pain perception co-occur [9].

Individual differences in psychological factors such as catastro-
phizing can alter central sensitization/descending control
[11,16,18,19,29], leading to the hypothesis that treatments that re-
duce catastrophizing might also reduce central sensitization [18].
Our study provides support for this hypothesis because individuals
whose catastrophizing was reduced by the cognitive intervention
had the greatest reduction in secondary hyperalgesia. However,
there was no group difference in the reduction of catastrophizing
and no significant difference in the relationship between changes
in catastrophizing and secondary hyperalgesia. This finding limits
the inferences that can be made about the effectiveness of the
intervention in reducing catastrophizing. One possible explanation
is that the change that occurred was in state catastrophizing (ie,
catastrophizing specific to the pain stimuli presented) and that
the measure of catastrophizing used captured only a portion of
the relevant variance. The inability to distinguish changes to state
and trait catastrophizing is a limitation of the study. An alternative
explanation for the lack of group differences is that some individ-
uals in the control group had reductions in both catastrophizing
and secondary hyperalgesia without intervention. Elucidating
which individuals respond maximally to cognitive interventions
and which might simply improve over time without intervention
might therefore improve our understanding of how to efficiently
apply these treatments.

A laboratory-based paradigm such as the one used here offers
distinct advantages for understanding mechanisms of cognitive
interventions. Unlike clinical studies, the amount of nociceptive in-
put can be controlled, eliminating confounding elements due to
individual differences in peripheral pathology, which are often
poorly understood. Previous work has demonstrated consistent
but moderate effects of CBT in chronic pain populations [45].
Improvement in outcomes is hampered by limited understanding
of the processes by which successful treatment occurs and lack
of appropriate measures to understand these processes [45]. Our
study suggests that in addition to commonly studied outcome
measures like depression and disability, modulation of central sen-
sitization might be an additional benchmark for examining the
effectiveness of these interventions. Our design allows for manip-
ulation of nociceptive input and direct measurement of secondary
hyperalgesic responses and their relationship to sensory, affective,
and cognitive responses to pain, potentially providing improved
understanding of how these treatments work and whom they work
for.

We also note that this study was an exploratory investigation of
whether cognitive training can affect sensitization; it was not de-
signed to identify the specific components of the training that con-
tribute to the observed effect. The psychotherapeutic intervention
given to the control group was intended to control only for general
effects of psychotherapy (eg, changes in mood) beyond the exper-
imental context. Therefore, we did not match the 2 groups in terms
of their ability to apply what they learned during the experience of
pain and placed the control intervention after the pain stimuli to
explicitly avoid use of the skills taught in the control intervention
during pain. This design places limitations on the interpretations of
the findings as follows. First, because the study was not designed
to compare 2 active treatments for pain, it should not be concluded
that CBT is superior to other psychotherapeutic interventions in
terms of the effects observed. Second, it is possible that the groups
differed in terms of effects not specific to CBT, such as distraction
during pain or differential experimenter contact. It should be
noted, however, that any differences in training were present at
both session 1 and session 8, making it unlikely that such differ-
ences would drive the significant Session � Group interactions that
constitute the key findings in this paper. Nevertheless, the CBT
intervention used here consisted of many different elements,
including reduction of negative thoughts and focus on positive
goals. Further study is needed to isolate specific aspects of thera-
peutic intervention that alters central sensitization.

Much is known about how maladaptive plasticity gives rise to
central sensitization and how central sensitization contributes to
pain disorders. Less is known about how this plasticity can be har-
nessed and reversed volitionally. If prolonged nociceptive input al-
ters the balance of descending inhibition and facilitation, leading to
chronicity [27], then mitigating or reversing this plasticity at an
early stage might prevent chronification of pain. Here we demon-
strate reduction in experience-induced secondary hyperalgesia
after a brief cognitive-behavioural intervention. These findings
show how alteration of pain-related cognitive and affective re-
sponses can reduce centrally mediated pain responses, leading to
the intriguing possibility that such intervention might reduce pain
chronicity. Recent work demonstrates that CBT alters both func-
tional activation [21] and brain structure [35] in regions involved
in cognitive modulation and descending control of pain in chronic
pain populations, suggesting that plasticity that underlies the ob-
served reductions in central sensitization could be similar to that
present in chronic pain. The time course of such changes is unclear.
CBT can have long-term effects over variables such as anxiety,
depression, perceived control, and functional disability [5]. Bush-
nell et al. [7] suggested the neural bases that underlie these types
of cognitive and affective deficits may overlap with pain modula-
tory systems, suggesting that the time course of central sensitiza-
tion changes might be similar. Nevertheless, further research is
needed to delineate the time course of the effects observed here
and the likelihood that reductions in central sensitization might
represent a long-lasting benefit of pain focused cognitive training.
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